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Proposed UV Emitter Structure based
on AlInGaN Quaternary Alloy
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Band Gap and Lattice Constant for III-Nitrides
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Motivation for Quaternary Interest
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Grow active layers with E, > 3.4 eV but lattice matched to GaN

If AlGaN is used, tensile stress from growth on GaN reduces band gap

Quaternary active layer contains indium which significantly increases
quantum efficiency for light emission

Strain engineering of quantum well allows maximization of oscillator
strength resulting in higher radiative recombination rate



AlInGaN/InGaN Quantum Well Structure
with Adjustable Strain (tensile, compressive, zero)
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Band Diagrams for AllInGaN/InGaN Quantum Wells
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Manipulation of 2DEG via Strain Engineering
Using the AIInGaN Quaternary Alloy

* AIInGaN offers the independent
control of lattice constant and
band gap.

~100 A
<>

B compressive QW
Tensile QW
@ Unsirained QW

9
h'----[‘r v
T T A 3
50 650 850

Distance (A)

« Tensile, compressive, and
unstrained quantum wells can thus
be achieved in the nitride system.

* The density and location of the
2DEG can be manipulated via
strain engineering.
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Quantum Well Peak Energy vs Strain

Peak energy transition reduced by 236 meV for 3 nm QWs
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Peak Intensity vs Strain for AlInGaN/InGaN

Quantum Wells at 10 K

Emission intensity is reduced for strained quantum wells
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High Temperature InGaN Growth

855 °C was the threshold beyond which high quality AlInGaN was grown
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Growth of InGaN with 10% InN can be performed at 875 °C with
high enough growth rate and In/Ga ratio of 10



Quaternary Composition Range Investigated
(Bedair, 1995 to Present)
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Room Temperature PL for Thin Al In; ,,Ga, ¢, N
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Properties of Quaternary Alloys

Band Gap Lattice Constant (a)
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The Issue of Phase Separation
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We have observed the presence of separated/ordered phases in In Ga, N
when x > 0.28

For UV emitters using AlInGaN quaternary alloys, InN content needed
is much less than 28%. For example, Al JIn,,Ga, 4N is lattice matched to
GaN and E, =4.4 eV (A =280 nm)

Phase separation in AlInGaN takes place in a unique way



Isotherms for III-Nitride System

Calculation by Matsuoka:
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Immiscibility in AllnGaN Quaternary
Alloy Allows Several Options

» Separated AlInN ternary phase from excess Al and In.
(Not likely because ternary AllnN has low miscibility.)

» Separated ternary InGaN and AlGaN.

- Two quaternary alloys with high and low Al & In
mole fractions.

Low Al & In

b High Al & In
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Self-assembled superlattices in AlInGalN
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For high Al and In compositions, AlInGaN is
susceptible to phase separation
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Under certain growth conditions, SASL forms with
lattice matched layers



Schematic of Al,In,Ga,, N SASL
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Synthesis of Al In,Ga,;, /N SASL
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Experimentally Observed Effect of
Al & In Flux on SASL Layer Thickness
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With a higher Al & In flux (F), It takes less time
for the Al-In melt to accumulate and block the
growth of the 1st quaternary layer.



